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INTRODUCTION 

It is known (e.g., [i]) that the stability condition for jet flow of an ideal fluid is 
determined in the final analysis by the nature of the pressure distribution in the fluid and 
its jump at the free surface of the jet. Since the pressure distribution in a magnetizable 
fluid and the pressure jump at its free surface are determined not only by hydrodynamic 
quantities, but also by the magnetic field, one must assume that the stability condition for 
a jet of magnetizable fluid will be significantly different from that for a similar jet of 
nonmagnetic fluid. Surface waves and the stability of a plane free surface of a stationary 
infinitely deep magnetizable fluid have been considered in a number of papers [2-5]. These 
papers show that a free surface in a magnetic field normal to it is unstable, determine the 
critical value of the magnetic field intensity, and explain the stabilizing effect of a tan- 
gential magnetic field on surface perturbations propatating along it. The mechanism of the 
interaction of field perturbations with an infinitely deep fluid having a plane surface which 
leads to instability or stabilization of surface perturbations should manifest itself in jet 
flows as well as in flows with a free surface, but the critical value of the field and the 
critical wavelength are affected not only by the parameters determining the stability of a 
plane surface of an infinitely deep fluid, but also by the initial curvature of the surface 
and the finite thickness of the jet. The classical problem of the stability of an axissym- 
metric vertical jet of ideal fluid was treated at the end of the last century by Rayleigh 
[6], who showed that such a jet is always unstable: Any perturbation with a wavelength 
greater than the perimeter of the jet increases with time. The instability is caused by sur- 
face-tension forces of the cylindrical surface. The force acting on a unit surface of a 
magnetizable fluid is determined not only by the surface tension, but also by the magnetic 
field. In addition, a nonuniform magnetic field leads to a nonuniform pressure distribution 
in a magnetizable fluid, and this has a substantial effect on the stability of the surface 
of the fluid. Thus, the stability of an axisymmetric jet of magnetizable fluid in a magnetic 
field must be substantially different from that of a similar jet of nonmagnetic fluid. 

i. Statement of the Problem 

Neglecting thermal and electrical conductivities and internal angular momentum, the 
motion of an ideal magnetizable fluid is described by the equations [7, 8] 

p[Ov/Ot + (vv)v] = - - V P  + Pg + ~oMVH, divv  = 0, 
rotH = 0, divB = 0, ( 1 . 1 )  

B =  9 H =  ~ 0 ( ~ + M ) ,  M =  [M(H)/HIH 
w i t h  t h e  followz~ng b o u n d a r y  c o n d i t i o n s  a t  t he  f r e e  s u r f a c e  s e p a r a t i n g  media  i and 2 [ 9 ] :  

{p + (l/2)~o(M-n) ~} = a(t/R~ + l/R~), ( 1 . 2 )  
{ B . n }  = 0, { H •  

where  {a} = a~ -- a z ,  M i s  t he  m a g n e t i c  moment pe r  u n i t  volume o f  t he  m a g n e t i z a b l e  f l u i d ,  B 
and H are, respectively, the magnetic induction and the magnetic field intensity in the fluid, 
n is a vector normal to the free surface, p includes the hydrostatic pressure and the pres- 
sure arising from the magnetostrictive effect (cf., e.g., [4]), ~ is the surface tension, and 
Rz and R2 are the principal radii of curvature. 

We consider a vertical cylindrical jet of magnetizable fluid having a radius a and a 
permeability ~ surrounded by a medium whose density and magnetization can be neglected. The 
jet is in an external magnetic field Ha = {Har(r), Hae(r), Haz} which satisfies Maxwell's 
equations and does not disturb the axial symmetry of the jet. Here r, 0, and z are cylin- 
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drical coordinates with the z axis along the axis of the jet. An example of such a field 
is H~ = {A/r, B/r, H~z = const}*. 

We study the stability of the jet described above in the linear approximation in small 
perturbations of the velocity v' -- v -- Vo, the pressure p' -- p -- po, the magnetic field 

-- I~ ~ intensity h~,u ~ H~,~ -- H~ H',,~ = H~,~-- H~~ and the magnetization mx,u = M~,~ x,a, 
M~, a = M:, a -- M~, a, where a superscript 0 denotes the equilibrium value. 

We transform to a reference system in which the jet is at rest. Then, introducing the 
velocity perturbation potential v' = --V~ and the magnetic field perturbation potential hz,a = 
--V~,u, where the subscripts i and 2 refer, respectively, to the fields inside and outside 
the jet, and linearizing Eqs. (i.i) and boundary conditions (1.2), we obtain the equations 
for the potentials of small perturbations, assuming the magnetization is linearly proportional 
to the magnetic field M = xH, 

h~=0, A T e = 0 ,  AW~=0,  

whose solutions must satisfy the conditions at the free surface 

o~ . , .  o ~  

( l . 3 )  
~- = - -  - ~  ,.=_. Fobs, - -  ~ h ~  = (F--~o) H~r-~; + ~ / - / ~ o  -~ - ,  

h~:, - -  h~z = ~ - -  ~o o~ ~. --~o_ H a~ i 
P-o H~r~-, h~o--h~o-- ~o ~roo a 

and the conditions that the perturbations are finite at r = 0 and damped as r § ~. Here ~ = 
r --a is the small radial deviation of points of the free surface of the jet from the equi- 
librium cylindrical surface. The boundary conditions require that the equilibrium values of 
the fields satisfy Hao = Hzo, Huz = H~z, ~oH~r = PH~r at r = ~. Here, as in (1.3) and in all 
that follows, the zero superscripts denoting equilibrium values are omitted. 

2. The Dispersion Equation and Its Analysis 

Since the form of the solution of the Laplace equation in cylindrical coordinates is 
critically dependent on whether it is periodic along the axis of symmetry, we write the sur- 
face perturbations as a sum of two independent terms, ~ = ~ + ~2 = ~x exp (is8 -- imt) + ~2 
exp (ile + ikzz -- i~t), where the first term is periodic only in the angle 8(k z = 0) and the 
second in both 8 and z. As a result of ~he periodicity of the solution in 8, s, and ~ are 
integers which independently take on all values of s > 0 and ~ ~0 (s = 0 corresponds to the 
trivial solution ~ = const). The linear formulation of the problem logically leads to the 
assumption that the perturbations of physical quantities are proportional to the surface per- 
turbations, so we write them in the form f(r, 8, z) = f,(r)~z + f~(r)~. The general solution 
of the Laplace equation for such perturbations is f~ = a~r s + ~r -s, f~ = ~al~(kzr) + ~K~. 
(kzr) , where I~ and K~ are modified Bessel functions and the ~i are coefficients determined 
from the boundary conditions. The substitution of this solution into the boundary conditions 
leads to two independent dispersion equations, 

,[ pco 2 = -~- - -  (~ - -  bto) Hx aHIOr (~ ~o~~ * ' I r - -~-r  ~ a H l r +  

, , -  i , ( ~ - , ,o ) '  ( _  H~r~ + H~o~o)]; 

i~ (k~) J oH, p~o~ = k~ ~ [ - -  (~ --  ~o) H ~ - ~  + 

+ k~ (~ -- ~o)' [,~:~I~H~, + , oK/ ,  (~,~ + ~H~o/k#)~] _ 
~o ( ~ : / ;  - ~o~:i', ) 

(l~--~o)2 r~ OHx,. t~a~ § l~ :: t I 

(2.1) 

( 2 . 2 )  

*The stability of a jet of magnetic fluid in a solenoidal field Ha = {0, 
investigated in [12]. 

0, Haz = const} was 
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describing the behavior of the perturbations when k z = 0 [Eq. (2.1)] and k z # 0 [Eq. r 
In both equations the values of the field intensity and its gradient are taken at r = a. 

The presence of a magnetic field gradient directed toward the center, which generally 
occurs in axisy~etric fields, leads to a compression of the cylindrical column of fluid 
which is somewhat similar to the pinch effect for electrically conducting fluids (plasmas) 
[i0]. However, the effect of the magnetic field on the stability of this column is complete- 
ly different. As a matter of fact, as already noted above, a cylindrical jet of ordinary 
fluid is always unstable, while it follows from Eq. (2.2) that an axisymmetric jet of mag- 
netizable fluid is unstable if 

G=__(~__po) H1aH1 (~ -- ~O)~HlraH1~ = Or po Or ~ < 0 (2 .3 )  

(only in this case a number k z can always be found which is small enough so that for I = 0 
the expression in curly brackets is negative and m2 < 0, which also leads to instability), 
that is, the presence of a sufficiently large field gradient directed toward the center 
stabilizes a cylindrical volume of magnetic fluid, while a self-constricted plasma pinch 
(pinch effect) is always unstable. In its effect on stability, the quantity on the left- 
hand side of inequality (2.3) plays the same role for a cylindrical column of fluid as (Pl -- 
p2)g does for a plane surface of separation of two fluids. Thus, the behavior of the Ray- 
leigh--Taylor instability of a plane surface is determined by the condition (p~ -- Pa)g < 0, 
where 0~ is the density of the lower fluid, whereas the analogous condition (2.3) determines 
the instability of a cylindrical surface. 

Continuing the investigation of Eq. (2.2), we note that the nonfulfillment of Eq. (2.3) 
is a necessary, but not sufficient condition to ensure the stability of an axisymmetric jet. 
Since K~/K~ < 0 and I~/I~ > O, for a sufficiently strong radial field, or more accurately, 
for a field which satisfies the condition 

the equilibrium cylindrical surface becomes unstable. To determine the limits of stability 
it is necessary to minimize the condition obtained with respect to all possible values of k z 
and ~, i.e., to determine the parameters of the most unstable perturbation and the corre- 
sponding critical value of the field H~r , determined by the condition 

- - - T - +  " 

Here k : (0, ~/a, kz) and H~ : {0, H~0, H~z}. 

Since condition (2.4) cannot generally be minimized analytically with respect to all k z 
and ~, we consider the limiting cases, enabling us to get rid of the Bessel functions. 

! 

Suppose kz~ >> i, but ~ ~ i. In this case ll/l~ § i, K~/K~ § --I, and (2.4) takes the 
form 

=minI~ o H: cos' (? -- ~). + (G ok) ~,(~+~o)I (2.5) 
~. ~ t ~ cosS ~ \~-q- ~ (~ _ ~0)~ cos ~J' 

where ~ is the angle between the wave vector k and the z axis (-~/2 < B < v/2), and y is the 
angle between the tangential component of the field H T and the z axis. Minimization of (2.5) 
with respect to k leads to the condition 

.-- cos~ ~ ~ (~ - ~o)~ cos ~J' (2.6) 

where the k* corresponding to the minimum is 

k* = V-dTg (2 .7)  

and does not depend on ~. The expression in curly brackets in (2.6) consists of two terms, 
each of which has a clear physical meaning with respect to its effect on the direction of the 
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perturbations which are most "dangerous" for stability. The first term is minimum for 8 = 
T + ~/2; i.e., the tangential magnetic field eliminates perturbations propagating at right 
angles to its direction. The second term is minimum for 8 = 0; i.e., the axial symmetry of 
the problem eliminates perturbations propagating along the axis. Actually, perturbations 
with ~ ffi 0 are the most "dangerous" for the stability of an ordinary fluid. The interaction 
of these two mechanisms leads to a certain new direction of most "dangerous" perturbations. 

If Hr = O, the first term is zero and the minimum occurs for I = 0; in this case, 

9o(9 +9o) (2.8) (H 0 2 

If H T # O, differentiation of (2.6) with respect to ~ leads to a trigonometric equation 
for ~*, 

_ _  ~ r~-~ ~o (~ + ~o) 0, (2.9) ~o~ H~ sin ~cos (~* - -  ?) + s in 2~* y ~  - - ~ - - - ~  = 

determining the direction of the most "dangerous" perturbations. This direction is deter- 
mined by the magnitude and direction of the field H~ and by other characteristics of the 
problem. 

, 
We note that for 8 -- T # ~/2, the critical value of the field H~r is larger than that 

given by (2.8); i.e., the tangential field H T not only changes the direction of the most 
"dangerous" perturbations, but also produces a further reserve of stability. 

As a matter of fact, if y = ~/2, the two physically distinct directions -- normal to the 
field and along the axis of the jet -- coincide, and ~ = 0. Since T -- ~ = ~/2, the critical 
field is again given by (2.8); i.e., the azimuthal field actually does not affect perturba- 
tions with k z # 0. If T = 0, we find from (2.9) that 8 = 0; now, however, the critical field 
intensity is increased by ~oH~/~ in comparison with the case of a radial field only. 

T ! 
If kz a >> 1 and I >> i, Il/I l = k/k z, and KI/K 1 = --k/k z, and from (2.4) we obtain 

* 2 ~'~o ~ ( ~ + ~ o ) ~  (HIT) = rain ( ~  H~ cos~i(?-- ~) + ZV'~-G (~_~o),/, (2.10) 

where k* is again determined by (2.7), and the most "dangerous" perturbations are those prop- 
agating in the direction of the transverse field H~. Equation (2.10), derived in the approxi- 
mation kza >> i and I >> i, as should be expected, agrees with the corresponding expression 
derived for a plane surface, the only difference being that G plays the role of og. 

Perturbations with k z = 0 described by Eq. (2.1) lead to instability of the jet if 

~o(~ + 9o)~ (G + ~z a.~) ' 

from which 

(HI~) 2 -~(H~.ko) 2 z-2V~-~ @~162176 
= . - - ~  ~(~--~o)~'  (2.11) 

where ko = {0, i, O} and k* = s*la = G~. 

Since the perturbations are periodic in 8, s* must be an integer. If a G~7~ is not an 
integer, the critical number s* corresponds to the number [a G~7~] or [a G~7~] + 1 for which 
H1r is smaller. Here [a] denotes the integral part of a. We see that the presence of the 
field H~ 8 increases the threshold values of the field above which perturbations with k z = 0 
are unstable. 

Thus, in contrast with a plane surface, a tangential field has a significant effect on 
the appearance of instability of an axisymmetric jet. As a matter of fact, for a field H T = 
{0, HS, Hz}, the direction of the most "dangerous" perturbations with k z # 0 is not perpen- 
dicular to HT, as was the case for a plane surface, because of the effect of axial symmetry, 

* becomes larger than in the absence of a and as a result the critical value of the field H~r 
tangential field H r . If the component of the tangential field H 8 is different from zero, 
the instability threshold increases also for perturbations with k z = 0. Then, whether the 
perturbation with k z = 0 or the one with k z # 0 begins to develop first depends on a compari- 
son of corresponding critical values of the field, but in general both thresholds are higher 
than for H T = O. Once more we note that the change in threshold occurs when the field H T 
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has both azimuthal and axial components. The presence of only one component (the threshold 
remains unchanged) changes the form of the developing perturbations; the most unstable per- 
turbations are those with a wave vector perpendicular to the existing component of the tan- 
gential field. If there is no tangential field, the magnetic permeability of the fluid 
determines whether the perturbation with k z = 0 or the one with I = 0 is more unstable in a 
radial field. A comparison of the minima of Eqs. (2.4) for I = 0 and (2.11), for example, 
for a jet of radius a = 5~a/G, shows that for ~/~o < 1.35 the perturbations with k z = 0 are 
the more unstable, and for ~/~o > 1.35 the opposite is the case: The threshold is lower for 
perturbations with I = 0. 

The stabilizing effect of a uniform axial magnetic field was easily observed experi- 
mentally. In our experiments a vertical cylindrical jet of magnetizable fluid has a diam- 
eter of i mm at the critical point where it breaks up into drops 58 mm from the point of ef- 
flux and was completely stabilized over the whole experimental portion 150mm long by a uni- 
form vertical magnetic field of 130 kA/m. The magnetization of the fluid was 12 kA/m. 

In addition, by changing the flow rate of the fluid, an initial stream of drops was 
transformed into a jet by turning on a magnetic field of the intensity indicated. 

The authors thank Yu. D. Barkov and V. I. Arkhipenko for help in performing the experi- 
ment. 
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